

B. Sc. (Sem. V) (CBCS) (W.I.F. 2016) Examination

October / November - 2018

Mathematics: Math - 07 - A (Boolean Algebra & Complex Analysis-I) (Old Course)

> Faculty Code: 003 Subject Code: 1015003

Time: 3 Hours] [Total Marks: 70

Instructions: (1) All the questions are compulsory.

(2) Numbers written to the right indicate full marks of the question.

Seat No.

4

2

3

5

- 1 (a) Attempt all the questions:
 - (1) Define antisymmetric relation.
 - (2) Give an example of an relation on {1, 2, 3} which is reflexive but not symmetric.
 - (3) Is (S_{30}, D) a chain ? Justify your answer.
 - (4) Write maximal elements for the POSET $(\{1, 2, 3, 4, 5, 6\}, /)$.
 - (b) Attempt any one:
 - (1) State and prove Isotonicity property.
 - (2) State and prove Absorption law for a lattice.
 - (c) Attempt any one:
 - (1) State and prove Modulus inequality.
 - (2) State and prove Distributive inequalities.
 - (d) Attempt any one:
 - (1) Define direct product of lattices. Prove that direct product of two lattices is also a lattice
 - (2) In usual notation prove that in a complemented distributive lattice the following are equivalent.
 - (i) $a \le b$

- (ii) $a \wedge b' = 0$
- (iii) $a' \lor b = 1$
- (iv) h' < a'

- 2 (a) Attempt all the questions: 4 Define Boolean algebra. (1)(2)How many squares are there in a K-map of the expression contains 4-variables. (3)Define atoms of a Boolean algebra. (4) State unique representation theorem. Attempt any one: 2 (b) (1) In usual notation prove that in a Boolean algebra $(B, *, \oplus, ', 0, 1)$ for every a, b, c in $B(a*b) \oplus (b*c) \oplus (c*a) = (a \oplus b)*(b \oplus c)*(c \oplus a)$ Obtain the minimal sum of product of the Boolean (2)expression $\alpha(x, y, z) = xyz + xyz' + x'yz + x'y'z$ Karnaugh map. 3 (c) Attempt any one: In usual notation prove that a non zero element of a Boolean algebra $(B, *, \oplus, ', 0, 1)$ is an atom if and only if $\forall x \in B$ either a * x = 0 or a * x = a. Express as the product of its maxterm: (2) $a(x_1, x_2, x_3) = (x_2 * x_3).$ 5 (d) Attempt any one: State and prove Stone's representation theorem. (2)Define minterms and in usual in notation prove that sum of all minterms of n-variable x_1, x_2, \dots, x_n
- 3 (a) Attempt all the questions:

is 1.

- t all the questions:
- (1) Define analytic function.
- (2) Evaluate : $\lim_{z \to \infty} \frac{2z+3}{z+i}$
- (3) Define Laplace equation.
- (4) Define entire function.

(b)	Attempt any one:				
	(1)	Prove that $exp(z)$ is analytic.			
	(2)	Show that $f(z) = \overline{z}$ is not analytic function.			
(c)	Attempt any one:				
	(1)	In usual notation prove that if the complex function and its conjugate are analytic then it is a constant function.			
	(2)	If u and v are conjugate harmonic function then prove that the family of curve obtained by $u = c_1$ and $v = c_2$ are orthogonal.			
(d)	Atte	empt any one:	5		
	(1)	Obtain necessary conditions for a complex function $f(z)$ to be analytic.			
	(2)	Find an analytic function $f(z) = u + iv$ such that			
		u - v = x + y.			
(a)	Atte	empt all the questions:	4		
	(1)	Write Laplace equation in polar form.			
	(2)	Define Jorden arc.			
	(3)	State Cauchy integral formula.			
	(4)	Define Contour.			
(b)	Attempt any one:				

- (1) Prove that $\int_{0}^{1+i} \overline{z}dz = 1.$
- (2) Define closed curve and closed contour.
- (c) Attempt any one:
 - (1) State and prove Cauchy's fundamental theorem.

(2) Find
$$\int_{C} \frac{dz}{(z^2+4)^2}$$
, $C:|z-i|=2$

4

(d)	Attempt	any	one	:

- 5
- (1) Obtain C-R conditions for analytic function f(z) in polar form.
- (2) Prove that $u = r^2 \sin 2\theta$ is a harmonic function and find its conjugate.
- 5 (a) Attempt all the questions:

4

- (1) Define: Limit of complex function.
- (2) Evaluate: $\int_{C} \frac{(x^3+3)}{x} dz$ where C is an ellipse with center at origin.
- (3) Which curve is represented by the equation $\left|z-z_{0}\right|=r_{0}\,.$
- (4) Define: Complex function.
- (b) Attempt any one:

2

- (1) State and prove Cauchy inequality.
- (2) Evaluate $\int_{C} \frac{z}{\left(z-2\right)\left(z+\frac{1}{2}\right)} dz; c: \left|z\right| = 1.$
- (c) Attempt any one:

3

- (1) State and prove Liouville's theorem.
- (2) State and prove fundamental theorem of algebra.
- (d) Attempt any one:

5

- (1) State and prove Morera's theorem.
- (2) Evaluate: $\int_{C} \frac{z}{(2z-1)(z+1)} dz$, C: |z| = 2.